Vol. 1 No. 1

[PAPER]

Dec. 1990

Automatic. Devanagari Character Recognltlon Usmg

" Structure Analysis

Krishnamachari Jayanthit

Yoshiyuki Kawazoefttt Masayuki Kimurat

Akihiro Suzukift

Hiroshi Kanaiftt Youko Akiyamaltt
Ken'iti Kidot Keisho Tsukamotoffttt

Devanagart characters, which are used in Sanskrit, Hindi, and other Indian languages, -
are the target of automatic recognition in this study. The present research is confined to
recognizing 67 printed characters which occur frequently in the old Sanskrit manuscripts
of the Saddharmapundarika. The prominent features of these characters are extracted and
the top-doun binary tree is used for their recognition. A special thinning algorithm is also
developed for this script. The recognition rate obtaind is more than 95% for the extracted

characters.

1. Introduction

DevanagarT is the most widely used script
in India. Just as Kanji is used both in the
Chinese and Japanese languages, Devanagari is
used in Sanskrit, Hind1 and Marathi, the latter
two languages being included among the official
languages of India, and Hind1 speakers forming
30% of the population. Sanskrit is a language
with a history similar to that of Latin; widely
used by the ancient scholars in their literary
compositions, hence of great academic interest,
but not in everyday use at present. '

The Devanagarl alphabet consists of 14 vow-
els, 33 consonants, 10 numerals and 3 special
characters. Not all the characters are necessarily

present in any given text;-there are even char-

'l"aculty of Dngmeenng, Tohoku Umversnty Aramaki

aza Aoba, Aoba-ku, Sendai 980, Japan

ttResearch Center for Applied Information Sciences,
Tohoku University 2-Choume 1-1, Katahira, Aoba-ku,
Sendai 980, Japan

tttEducation Center for Information Processing, To-
hoku University Kawauchi, Aoba-ku, Sendai 980, Japan
tHttnstitute for Materials Research, Tohoku University
2-Choume 1-1, Katahira, Aoba-ku, Sendai 980, Japan
tttHfFaculty of Arts and Letters, Tohoku University
Kawauchi, Aoba-ku, Sendai 980, Japan

25

acters which occur only in comblnatlon forms,
and some characters may be found only three or
four times in the entire text, If we 1nclude the
vowel-consonant (v-c) and consonant-consonant
(c-c) combmatlons,'the number. increases enor-
mously. The v-c combinations total 462 (14 vow-
els X 33 consonants). The c-c combinations can
be formed by adding any number of consonants
in any order, but in practice, thehumber»of c-c
combinations is quite limited and may not exceed
fifty for texts of ordinary complexity (number of
characters = 14 vowels by 50 c-c’s = 700). The
c-c combination characters are formed by restor-
ing the characteristic features.of elements. A
detailed explanation of the combination of these
elementary fonts to form combination characters
in Devanagari can be found in Refl).

Many of the original texts.of Buddhist lit-
erature are written in DevanagarT (Sanskrit).
Given the widespread interest in the study of
original Buddhist texts and considering that it
is quite unrealistic to expect those engaged in
Buddhist literature studies at present to learn
an entirely new script for the purpose of 'their
research, the task of converting texts written in

26 Rk

Devanagarl into Roman script becomes neces-
sary. Since the Buddhist texts are voluminous,
a computer system to automatically transcribe
DevanagarT into Roman script would be eagerly
welcomed. Further, printed data, due to the
aging of the paper, is always subject to dete-
rioration and the cost and effort of restoration
is also high. If the texts could be stored in a
computer database, they could be more easily
preserved and very easily maintained in terms
of cross-references and so on. A beginning has
been made in this direction by concentrating on
a specific text. '

Sinha and Mahabala?) once tried to recognize
Devanagari automatically according to their pat-
tern analysis system. They chose 26 symbols and
extracted structual information for these charac-
ters. They tested their method experimentally
using the IBM 7044 system.
experiment was limited in sample size (several

However, their

characters for each symbol) and could not give
a quantitative recognition rate. Although the
present study has been developed independently
of the method devised by Sinha and Mahabala,
it conceptually is an extension of their work. We
have employed a more sophisticated thinning al-
gorithm, a large set of characters, a more com-
puter suitable feature extraction method, and an
exhaustive experimental recognition test, aim-
ing to achieve a practical level of automatic
DevanagarT recognition. Since one of the final
aims of this project is to recognize automati-
cally the old handwritten Buddhist manuscripts
in Devanagari, structure analysis method is es-
sential. We are also studying pattern matching
method to recognize printed Devanagarl script,
and a part of the result has been published in
Ref),

. This paper is divided into four sections. The
next section describes the method of data col-
lection and the problems encountered due to the
age of the text. The thinning algorithm and the
modifications made to the existing algorithm in
view of the specific requirements of Devanagarl

it Dec. 1990

are presented in the third section. The fourth
section explains the actual methodology of fea-
ture analysis. The fifth section deals with the
algorithm used for recognition, namely the top-
down binary tree, and the results. The last sec-
tion is devoted to the conclusion.

2. Data Collection and Problems

2.1 Database

The programming and database creation was
done on IBM 3081-KX6. The database consists
of whole lines of text and the coordinates of
extracted characters for each line of text. The
original text has been expanded by a factor
of 2.5 and was read in sequence (line by line)
using an image scanner (IBM 6392). Manual
adjustments were made to make sure that the
page was properly aligned. The characters
stored are in the form of a 144 by 96 matrix.
Though it cannnot be said that even with this
high resolution the characters are being read
with 100% accuracy, practical limitations such
as storage and processing speed make it difficult
to handle matrices larger than the one mentioned
above.

The extraction has been performed by the
standard histogram method. The lower
part of Figure 1 shows the first page of
Saddharmapundarika®), printed in Devanagarl.
As is shown in Fig. 1, due to the nature of the
script, each line has been divided into three lon-
gitudinal sections, the first being from pixel 1 to
24 on the y axis, the second, which is the main
part, from 25 to 72, and the third from 73 to 96.
Although the extraction is done separately for
each section, the three parts are integrated by
examining and matching the coordinates before
the character is analysed for recognition.

2.2 Problems in Data Collection

The Sanskrit text which was used for recogni-
tion is the Saddharmapundarika (Lotus Sutra)3),
one of the most important Buddhist texts. This
text was edited and printed in 1912 by H. Kern
and B. Nanjio. However, the quality of printing

Vol. 1 No. 1

[

T

................. o~
72
96 Q ﬁ
~ofl) (2 ¢ ~—~

5

Automatic Devanagari Character Recognition Using Structure Analysis 27

<«—— main horizontal line

B AT BEARSITHREDT: | T REaaNTAedR SR Al Sa-

AFNTAAEICTs TS STETen: |

(4) . (5)
BqRIgs T AR (A |

c ~ . _~(8)
AFHUE{ e W AT g |

The enlarged upper part shows the present resolution and the coordinate system used.

Fig. 1 DevianagarT sample text in Saddharmapundarika.

ch & =h

Correct 'ka’ -~

T &

Defective —

Except for the leftmost one, recognizable defects are observed.

- Fig. 2 Example of printing defects in the text for ‘ka’.

leaves much to be desired. In addition to uneven
printing, it contains a lot of noise and breaks
which distort the characters. Fig. 2 shows ex-
amples of these defects for the Devanagari char-
acter “ka” , found in Saddharmapundarika. The
problems resulting from the printing defects have
been examined in detail in section 5.3 and sug-
gestions for corrections have been made. Though
the image scanner used has a resolution of 8 dots
to a millimeter, as the text is copied before being

fed to the image scanner, some of the fine details
of the characters are lost in the final image.

2.3 Characteristics of Devanagari

As shown in Fig. 1, most characters have a
heavy horizontal line somewhere near the top,
and likewise, end a few pixels above the bottom.
The region between this main horizontal line
(MHL indicated in Fig. 1, which falls somewhere
around 30 pixels from the top, and the lower
limit, which is around pixel 72, is referred to as

28 gy i Dec. 1990

the main character. There are several characters
which do not have the MHL and also a few
characters which extend below the usual lower
limit. Generally, the separate features above
the MHL or below the lower limit are vowel
additions to the main character and are handled
separately.

The point to be noted is that, unlike Kanji,
DevanagarT characters cannot be confined within
uniform squares. Apart from extensions be-
low the usual lower limit, even the width varies
widely from the thickest to the thinnest char-
acter. There are frequent cases where two or
more characters have been joined together to
form combination characters and there are a few
characters which are in two separate pieces. All
this leads to severe problems when trying to ex-
tract separate characters from the general text.
However, at the recognition stage itself, these
peculiarities make it easier to identify outstand-
ingly different characters, though extra process-
ing is required to find character boundaries.

In the introduction, the total number of
possible characters occurring in the Devanagart
alphabet has been mentioned. Given in the
next paragraph is the number of characters
computed with specific reference to the text (the
first 50 pages of the text were scanned for this
purpose), taking the standardisation of most v-¢
combinations into account.

There are 35 basic characters: 6 vowels
and 29 consonants. Additionally there are 4
special characters, 10 numerals, and here we
include 18 frequently occurring c-¢ combinations
for the recognition procedure. The characters
considered in the present paper are listed in
Fig. 3.

are 10. Hence the total number of characters to

The vowel features to be recognised

be recognised comes to about 100, with 10 vowel
features extra. The infrequently occurring c-c

combinations have generally been omitted.

3. Thinning Algorithm

3.1 Holt’s Thinning Algorithm

The basis for the thinning algorithim used
in this study is the one developed by Holt et
al.9). This algorithn was first applied without
any changes to the characters and the results
were studied. Fig. 4 shows an example of this
procedure for the Devanagari character “a”.

As mentioned earlier, two major features of
Devanagarl characters are the main horizontal
line and various vertical lines. It can be seen
that neither feature has been preserved by the
Holt algorithm. Considering that no general al-
gorithin would be able to take care of the special
features of any particular script and that the
Holt thinning algorithm was otherwise satisfac-
tory, it was decided to modify this algorithm
in order to make use of it for the special case
of Devanagari characters. In Devandgari char-
acters, MHL and vertical lines, which contain
almost no information, occupy large portions of
the character images and should be separated
out for recognition. The changes made to the
above algorithm are mentioned below,

3.2 Modifications to The Holt Thin-
ning Algorithm

Two modifications have been made at two dif-
ferent stages in the algorithm.
a. The pre-processing stage : Before the actual
thinning algorithm is applied, the character is ex-
amined for the presence of the main horizontal
line and vertical lines. This is done by comput-
ing the histogram along with the vertical and
horizontal axes and by checking for peaks. In
the case of the main horizontal line, the position
is also checked as this line occurs (if at all) be-
tween the same coordinates approximately, due
to prior positioning during image scanner read-
ing. For a vertical line, two checks are performed
: (1) the histogram value should be nearly equal
(up to five pixels less, to be precise) to the height
of the main character, and (2) the width of the
peak should be larger than 2 pixels. If the ver-

Vol. 1 No. 1 Automatic Devanagari Character Recognition Using Structure Analysis 29

K

G d

ka kha
q ¢
ja ta
ma yaA

B

u r e

T9T5

ga gha ca

300 d

da Qha na ta
ra la va sa

T

' h a end

9 G o A

pa pha ba bha

779

tha da dha na

L CEC

sa sa ha

ARAFIATT YT

ksa kta

T a

stha dva

pta ru tra Sra

sra sta dhra nja

S dadidg

dbha tta ddha ttva

pra dba

0UR33UE0LTY

0 I

2 - 3 4 5

6 7 8 9

Fig. 3 67 Basic Devanagart characters for recognition with pronounciations.

%0 R 25 Dec. 1990

tical lines are located, they are thinned to their
center positions and these positions are stored in
an array used to store the details of the charac-
ter (character array). For every character, only
one main horizontal line and up to three vertical
lines are allowed for; this is adequate, as no valid
character possesses more lines.

b. Modifications in the algorithm: During the
thinning stage, the positions already stored in
the character array are used to skip the thinning
checks for these coordinates in the character, i.e.,
for the thinned main horizontal line and vertical
lines, thus these are maintained as they are. Fig.
5 shows the modified procedure; the left half of
the figure shows the intermediate stage where
only the MHL and a vertical line have been ex-
tracted; the right half shows the last stage after
the application of the Holt thinning algorithm to
the rest of the character image, except for the
extracted MHL and VL.

The thinned pattern is given by the black solid line

and the original pattern is shown by the fuzzy part.

Fig. 4 Result of the unmodified Holt algorithm for
<

a’.

Intermediate stage

Final stage

Main horizontal line ¢

vertical line thinned.
The left part of the figure shows the intermediate
stage of the thinning procedure where MHL and VL
are extracted. The rest of the character pattern (left
bottom part) is thinned using the Holt algorithm to
produce the final result indicated in the right part
of the figure.

Fig. 5 Result of the modified thinning algorithm,

3.3 Defects in The Modified Thinning
Algorithm

Since the modifications concern two areas in
the character where MHL and vertical lines are
expected, the defects can similarly be categorised
as:

a. Failure to detect the main horizontal line
b. Failure to detect the vertical lines

In the course of testing, a balance had to
be struck between detecting pseudo MHL and
pseudo vertical lines on the one hand, and not
detecting some of the thinner lines on the other
hand. As the characters with MHL and vertical
lines are larger in number than those without,
detecting pseudo MHL’s and vertical lines would
have led to this class getting even larger and
would have required too complicated checks at a
later stage to reject those characters not really
belonging to this class. It was therefore decided
to include these characters instead in the smaller
in the class without MHL and
vertical lines where checking and rejection are

category, i.e.

simpler.

The histogram for the MHL shown in Fig. 6
shows that the peaks in the case of both “s”
Hence both
have either to be rejected or to be recognised.

and “0” follow similar patterns.

For reasons mentioned earlier, both have been
rejected. In the case of vertical lines, the width
of the peak is the point of comparison.

Inspite of the defects of the present algorithm,
the extraction of MHL and vertical lines before
the application of the thinning algorithm is
necessary to preserve the structural information
of the important part of Devanagari characters.
It might also be possible to extract the MHL
and vertical lines after application of the Holt
thinning algorithm to the whole character image.
Although this method is more general than the
present one, we have selected the latter in order
to use explicitly the characteristic features of the
DevanagarT script and reduce the complexity of
the analysis.

Vol. 1 No. 1

's’ Horizontal histogram

MHL present

Automatic Devanagarl Character Recognition Using Structure Analysis 31

9°

Pseudo MHL

\

'pta’

me— “llmul\l!l\’ilmmI |

VL present

Pseudo VL

Fig. 6 Defects of the modified thinning algorithm.

4. Identification of Important Fea-
tures

4.1 Method of Feature Detection

Before selecting a method for character recog-
nition, it is necessary to take the characteris-
tics of the script into consideration®). As De-
vanagarl characters have widely varying sizes,
unlike printed Kanji which can be confined in
uniform squares, most of these methods had to
be rejected as being unsuitable for Devanagail.
The frequently used DevanagarT characters in the
text taken for study are about 100. With this
small number, it is easy to locate the outstanding
features and classify the characters by a binary
tree based on these features.

A further reason why this method was chosen

is that the method of recognising characters
by their features can be extended to other
fonts than the font of the text under study
and subsequently to hand-written characters
too. The last advantage is especially significant
compared to the pattern matching method.

The features chosen for recognition fall into
two categories: (1) features which are outstand-
ing and easy to recognise in a program and (2)
features which divide the characters into equal
classes making the binary tree more balanced
and more efficient. As much as possible, both
factors were kept in mind, but the second factor
was given more importance in the earlier stages
of the division procedure. In the last few steps,
the ease of programming was taken into consid-
eration. It was also felt at the later stages.th'at

32 {118 VE e g A Dec. 1990

79 WY

Present Absent

Main horizontal line

T YH

Present Absent

Centred vertical line

a9 dh

One = | Two

T (<

Present Absent

Vertical line

ZZ A

Broad Narrow

Character end_

yd o
e

AAA o~

=l
£ 1t

Three Four

Number of free ends other than MHL

Fig. 7 IExamples of some outstanding features.

it is better to use the features as they occur,
instead of trying to force them into an artifi-
cial binary format. Hence at later stages in the
classification tree, the structure is not strictly
binary; branching into 3 or more leaves at node.

A cursory glance at the characters reveals
that the most outstanding feature of Devanagari
characters is the MHL. Although it secems at
first that all the characters possess this feature,
a closer inspection shows that this is not so,
though (he majority of characters do have the
MHL. Accordingly, this was chosen as the first
feature to bLe identified. The second feature has

been the presence or absence of vertical lines,

with the third (in case vertical lines are present)
being whether the line is the rightmost feature in
the character. The other features have been the
height/width ratio of the character, whether the
character is narrow or broad ended, the number
of free ends it has, etc. Immense care had to be
taken in the case of certain features, for example,
the number and position of free ends, to take
care of frequently occurring printing defects like
breaks.

Examples of some of the more outstanding
Table. 1

gives the checklist of the features used for the

features are given in Fig. 7.

recognition of each basic character (to give this

Vol. 1 No. 1 Automatic Devanagarm Character Recognition Using Structure Analysis 33

Table 1 Major featulies checklist for basic characters

Character MHL VL CVL MINT PCS END CHAR ENDS FINAL LEVEL
o ’ 2 1 N

zzzwzwwmwzzzwgzzzzwzzwwwz

DHA
NA
TA
DA
DHA
NA
PA
PHA
BA
BHA
MA
YA
RA
LA
VA
SA
SA
SA
HA

QO N NN DN NN W DNDNDND R WN NN

—
[%)
o
T

w

Ll S R N L i

KKK KKK KZHRR KKK ZRR KRR KRR
»

ZHRRHKHRIRKZKIK KKK KRZZZKKRZIKZRK KR ZKZ2Z22
222ZZZZZZZZ<Z§ZZZZZZZZZZZZZ'<2'<ZZZZ
RN W NN N NN R = R R kRN N NN R
el I I R R e N i e e e T il R T = S Sy S S S
T Z00 000000 ZZ000Z 200 Z00wZ2Zw
OO NI T W UTTOHOOODOOODDUT WO DO IO T O 0

zwzwzwzg

2/3

Please note that the features given above are only the major features. After classifying according to the features
given above, the characters are tested for the features which would be applicable in only this particular level,
and hence meaningless in the larger table. For example, between ‘ba’ and ‘va’, the only difference is the stroke
present or not inside the middle oval. Due to printing defects, the same character has differing features, as
shown above.

MHL - Main horizontal line

VL - Vertical line

CVL - Centred vertical line

MINT - Intersections with the main horizontal line
PCS - Number of the pieces of the character
END - End of the character - broad or narrow
CHAR - Broad or narrow character

ENDS - Number of free ends of the character

The final column gives the level at which recognition took place.

34 LE e e Dec. 1990

list for all the characters would have been an
unwieldy exercise). Table. 2 gives the actual
programming techniquc used to identify each of

these features. The general strategy used to

recognise all the characters is outlined in the next
section. The characters analysed for recognition
were those which resulted from the extraction

prograin.

Table 2 Detection of major features

Feature Method of detection

MHL Examine the histogram between pixels
24 and 35 on the y axis and compare
with other peaks to check that this is
the major peak.

VL Exarmine the histogram on the x axis and
check for peaks of value .ge. (character
height - 5) pixels & width of 3 pixels.

CVL As the vertical line can be rightmost
feature or centred (not left most), the
histogram to the right of the first vertical
line is checked, and if the numbers of
summed pixels in the integrated area are
non-zero for the main character, centred
vertical line is supposed to be present.

MINT The actual character array is scanned, for
the one row just below the main horizon-
tal line, and the number of intersections
is the number of non-zero pixels in this

row.

PCS The histogram value for the main charac-
ter alone is checked to find out how often
a zero value followed by a non-zero value
occurs.
END The character array is scanned starting
from the end of the main character
till five rows above: this point. If the
maximum width found thus is more than
half the character width, the end is
supposed to be broad; else narrow.
The maximum width of the character is
checked with its total height and if the
width is greater than half the height the
character is broad.

CHAR

ENDS The main character array is checked in
between its boundaries with a 3 X 3
window. With a nonzero pixel at the
centre, if the total of the nonzero pixels
among its eight neighbours is 1, or if
the total is and these neighbours are
consecutive, the centre pixel is supposed
to be a free end. The position is also
stored for further checking.

4.2 Design of The Program

The global flowchart of the program developed
in the present study is given in Fig. 8. The
maximum and minimum limits for the widths of
all valid characters were stored in the program;
these limits were computed by examining the
characters occurring in the first fifty pages of the
text under study. Extracted characters which
were read by the program and did not satisfy
the limits, were rejected even before the thinning
algorithm was applied (procedure 1 in Fig. 8).
The maximum limit check took care of most
of the characters which could not be extracted
properly, as well as some of the more complicated
c-c combinations which have not been taken into
account yet and have wider character widths.
The minimum limit check took care of most of
the isolated noise.

Unknown character
(in 3 parts - top,
middle and bottom)

__Proc.1 *
Check character width
beyond limits ?

Y ﬁ{ Reject I

Proc2 TN

Thin character
Find character details

Proc.3 * N Proc.4

Intersection with the [—| Add a vertical line
MHL ? : correctly

Proc.5 ‘Y Proc.6 ‘

Binary tree for

<—|Find character detailsl
recognization

Proc.7 * Proc.8

Y
llJnknown character ? |—> Character width or —Il Reje“l
- height too large ?

Proc.9 +N
Add a VL
N Find details
Binary tree

Proc.10 N Proc. 11‘ v
l Recognised character |~<—| Unknown character ? |—>l Rejec'.‘

Proc.12‘

Process vowel part, if —>| Composite output I
any

Reject procedures for unrecognizable characters are
also shown.

Fig. 8 Program flowchart for Devanagari script
recognition by structure analysis.

Vol. 1 No. 1

The next step was the pre-processing for
the thinning -algorithm. The character was
examined for the presence of MHL and vertical
lines. If these were found, they alone .were
thinned and the positions were noted in the
character array. Subsequently, the Holt thinning
algorithm was applied to the rest of the character
and the thinned result obtained for recognition
(procedure 2 in Fig. 8).

The various details about the character, such
as the boundaries of the character, whether the
character was broad or narrow ended, the free
ends and their positions etc., were found and
stored in the character array.

Some of the frequently occuring c-c combina-
tions have also been taken care of in the flow of
the program (procedure 4 in Fig. 8). Fig. 9
shows that two kinds of c-c combinations were
taken into account in the program. The first type
includes cases where the character is cut in such
a way that just checking one or two details will
reveal it to be a half-cut character. The second
type are combinations which have to be rejected
by the recognition process before they can be
recognised as a half-cut character. To give fur-
ther details, if the character has no intersection

cd UK

C -G combinations where the characters are separable

C a

Two piece character

One piece character

After extraction

ciwd W=l

Add a vertical line

After the addition of a vertical line, each is a basic character.

Only adding a vertical line, the combination charac-
ter is easily separated into two original-basic char-
acters.

Fig. 9 Handling separable c-c combinations.

Automatic Devanagarl Character Recognition Using Structure Analysis 35

with the MHL or the height of the character is
too small, it is the first type. A vertical line is
then added and joined to the character at the
rightmost centered free end and the details of
the character are found once again. In the sec-
ond case, after the binary tree for the Devanagari
character recognition (procedure 5 in Fig. 8, the
first three steps of which are schematically shown
in Fig. 10 and the details in Table. 3), if the
height and width of the character are not too

All characters 67

Level |

|
| |

a' EARTRE:) Lae [is

Characters with MHL

Level | —1|

|
| |

] S BT EY { ?('.. 19

Characters with VL Characters without VL
Level |—-1—2

Characters without MHL
Level |—2

Level | —I1—1

|
| |

F Q- [gF |»

Characters with CVL Characters without CVL

Level | ~1—1—1 Level |—I—1-2
. .
. .

a. First three levels of the binary tree

& f
One Two Three

b. Example of a non-binary type of feature .

Fig. 10 Binary tree and non-binary structure.

36 5 Gtk

Table 3 Basis for decision making in the tree

Level Basis

1-1 Main horizontal line present

1-2 Main horizontal line not present

1-1-1 Vertical line present

1-1-2 Vertical line not present

1-2-1 Vertical line present

1-2-2 Vertical line not present

1-1-1-1 Centred vertical line present

"1-1-1-2 Centred vertical line not present

1-1-2-1 One intersection with the main
horizontal line

1-1-2-2 Two intersections 7

1-1-1-1-1 One intersection #

1-1-1-1-2 Two intersections #

1-1-1-1-3 Three intersections #

1-1-1-2-1 One intersection 7

1-1-1-2-2 Two intersections 7

1-1-1-2-3 Three intersections #

1-1-2-1-1 Broad ended

1-1-2-1-2 Narrow ended

1-1-1-1-2-1 Only two free ends

1-1-1-1-2-2 Four free ends

1-1-1-2-1-1 Narrow ended

1-1-1-2-1-2 Broad ended

1-1-1-2-2-1 Disjoint character

1-1-1-2-2-2 One piece characters

1-1-2-1-1-1 Broad characters

1-1-2-1-1-2 Narrow characters

1-1-2-1-2-1 Broad characters

1-1-2-1-2-2 Narrow characters

The features given above are global and applicable to
most characters. In the actual situation, due to the
" nature of the printing, many more detailed checks
had to be performed. To take the example of the
character ‘.NA’, depending on the printing it had
two vertical lines with one centred, or one only at
the rightmost; three free ends, two, or none at all;
either a two piece character or one. Hence to give
all the details used to recognise all the characters is
not possible.

large, a vertical line is added to the character
(procedure 9 in Fig. 8). This, however, leads
to some characters being unnecessarily processed
before being rejected finally.

Note in Fig. 9 that even in this simple
procedure of adding a vertical line to separate
a combination character into multiple basic

¥ogk Dec.

1990

characters, there are two variations; namely,
characters which are one piece (MHL is not
counted) and characters where the vertical line
is added after a gap (just adding a vertical line
at the cut position, the shape of the original
basic character cannot be reproduced; extracted
MHL is shorter compared to the one in the
basic character), in other words, two pieces.
The difference between these two types is the
presence and position of free ends. If there are
free ends and at least one of them is at the
right extreme of the character and more or less
centered, the character is assumed to be a one-
piece character. In all other cases, it is supposed
to be a two-piece character. In the second case,
the gap after which the vertical line is to be
added is decided by the average width of the
character.

If after performing all of these procedures the
character is still not recognised, it is classified as
an unrecognized character.

5. Recognition Using Binary Tree
and Optimisation

5.1 Strategy for Recognition

Many of the features chosen for recognition
fall into a clear binary pattern. Even the other
features which do not necessarily fall into a
binary pattern either can be made to do so, or
else have a numerical basis for decisiém which
is easy to program. Further, a binary tree
is one of the fastest decision making processes
for a computer program. For these reasons, it
was decided to adopt a top-down binary tree
for character recognition. The parameters for
decision-making were decided on a trial and error
basis in view of accommodating the maximum
Although this has led

to a few errors, as explained in Section 5.3,

number of characters.

the results are generally satisfactory (Table. 4).
As there are 67 characters for recognition, to
give the full binary tree is an unwieldy exercise.
Accordingly, the tree has been traced up to the
first three levels, with the number of characters

Vol. 1 No. 1

Automatic Devanagar Character Recognition Using Structure Analysis 37

Table 4 Error percentages before error correction Summary of results:

-Page % error No.of

Categories of error

no. (total) errors Noise Break Thinning pa/ya Others
1 - 1.42 5 1 2 2 0 0
2 --1.83 10 "3 3 1 2 1
3 1.88 8 4 0 1 1 2
4 3.36 22 6 9 1 2 4
5 3.56 17 5 7 0 1 4
6 4.44 24 5 7 7 2 3
7 7.98 48 3 20 9 3 13
8 7.34 31 6 7 9 3 6
9 11.73 48 6 23 12 1 6
10 5.68 25 3 12 2 3 5
Total 4.92 238 42 90 44 18 44

in each branch, and following the major branch
only (Fig. 10a).

At later levels, the structure of the tree is
not strictly binary. To give an example of
a non-binary level, if we take the number of
intersections with the main horizontal line, the
number of branches is three most naturally (Fig.
10b). Although it would not have been difficult
to force binary structure even with these kinds
of features, this was not done because it was felt
that it would be better to maintain simplicity
in decision making rather than binary structure
at any cost. All the 67 characters are classified
according to this method and are the last levels
in the tree. Table. 3 gives the basis for each
branching in the binary tree.

By looking at the program, we can calculate
the average number of levels, as well as the levels
for the worst cases. The average turns out to be
six, with the worst case examples at eight (see
the last column in Table. 1.). Taking the average
levels, the number of characters which can be
recognised in a strict binary tree structure would
be 64. However, as mentioned before, in some

levels the branching not being binary has led ‘

to 67 characters being easily accommodated in
this tree. According to the clear characteristic
features extracted, the number of decisions to
obtain the final candidate is only 6 on the

average. This proves the effectiveness of the

present binary tree method for the recognition
of the Devanagart script.

5.2 Experimental Results

In order to evaluate the effectiveness of the
method chosen, recognition experiments were
conducted, taking the first ten pages of the
text as sample. The total number of extracted
characters in the first ten pages is 4863. This
being the characters as given by the extraction
program, including even those not properly

extracted.
5.3 Error Analysis
In Table. 4, the errors have been divided

into five categories. The final table gives the .
error percentage excluding the first two category

errors. This is due to the fact that the errors

from noise and breaks can be totally attributed

to the printing defects in the text and are

completely independent of the method used for

recognition. Although the confusion between
the characters ‘pa’ and ‘ya’ is also mainly
due to the text, these two characters could
have been distinguished through very stringent
checks. This error is therefore included in
the errors of the proposed method. The five
categories and the problems caused by them
are analysed below in detail with the help of
examples.

1) Noise: The effect of noise in the recognitio'nA .
process has been of two types. The first case

38 HRARES

Correct 'a' Defective Correct 'Sta' Defective

a. Noise in the character

'va' 'ha' 'tha' 'gha'

b. Break in the character

'tta' Defective Correct

<~— 'nta' —

d. Printing defect leading to resemblance

Four categories of sources which causes erroneous results.

Fig. 11 Error analysis.

1990

Vol. 1 No. 1

is where the noise is external to the character
and the change is very basic, such as changing
the size of the character and causing the basic
checks to fail. .

The second type is noise in the character. This
has had the effect of changing the thinned result,
so that the later checks, such as the checks of the
number of free ends, have failed. This is illus-
trated in Fig. 1la.

2) Break: This again can be divided into two
categories. When the break is in the main hor-
izontal line or in any of the vertical lines, basic
checks to detect these two fail and the character
will be rejected without any detailed checks be-
ing performed. When the break occurs elsewhere
in the character, the character is rejected at the
lowest level; there is even a case where the break
is such as to cause a resemblance to an other-
wise different character; the examples are given
in Fig. 11b.

3) Thinning defects: These have been examined
in detail in section 3.

4) Confusion between ‘pa’ and ‘ya’: As can be
seen from Fig. 1lc, these two characters re-
semble each other to a great extent, though the
examples given in the figure are extreme cases of
similarity. The methodology adopted for iden-
tification was to scan the portion immediately
below the MHL and at the left end, indicated by
the arrows in the figure. The curvature of this
portion was checked by finding the difference in
pixels between the left character boundary and
the most concave part of this portion. If this
value was only 1 or 2, the character was sup-
posed to be ‘pa’, else ‘ya’. It can be seen from
the figure that the original characters show more
difference than the thinned characters.

5) Others: This category includes all the other
errors, which again are due to two reasons. The
first being a resemblance between two characters,
especially after thinning, as the original charac-
ter is blurred due to noise or other printing de-
fects (Fig. 11d). The second category is due to
insufficient decision making in the program.

Automatic Devanagari Character Recognition Using Structure-Analysis 39

6. Conclusion

Recognising Devanagari characters by analysing
their features has had a promising beginning.
The results obtained from the first phase of the
research have also been encouraging.

Although the present system has been de-
signed with the font of a particular text in
mind, the same methodology can be extended
to cover other fonts, especially the more recent
ones. With the current state of printing technol-
ogy, the results for these are expected to be much
better. The next step would be to apply this
method to hand-written characters, and finally,
use linguistic knowledge to improve the results.

Acknowledgements

The authors wish to thank Asst. Professor M.
Yamazaki of Sendai Technical College for help in
reading the Buddhist text. They are also very
glad to Mr. Paul Hoornat for his careful reading
of the manuscript.

References

1) A. Suzuki, H. Kanai, S. Makino, Y. Kawa-
zoe and K. Kido: Devanagarl Character
Recognition Method by Using Extraction
and Recognition Procedures Simultaneously,
Journal of IEICE Japan, Vol. J72-D-II, No.
10, pp. 1643-1649 (1989).

2) R.M.K Sinha and H.N. Mahabala: Machine
Recognition of Devanagari Script, IEEE
Trans. on Systems Man and Cybernetics,
Vol. SMC-9, No. 8, pp. 435-441 (1979).

3) HKern and Bunyiu Nanjio (ed.):
Saddharmapundarika, St. Petersbourg, Im-
primerie de L’Academie Imperiale des Sci-
ences (1912).

4) C.M. Holt, A. Stewart, M. Clint and R.H.
Perrott: An Improved Parallel Thinning
Algorithm, Commun. of the ACM, Vol. 30,
No. 2, pp. 156-160 (1987).

5) S. Mori, K. Yamamoto and M. Yasuda: Re-
search on Machine Recognition of Hand-
printed Characters, IFEE trans. on Pat-
tern Analysis and Machine Intelligence, Vol.
PAMI-6, No. 4 (1984). ~

(Received January 6, 199.0)‘

